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Abstract 

Inorganic arsenic is a well-documented human carcinogen. Chronic low dose 

exposure to inorganic arsenic is associated with an increased incidence of a variety of 

cancers, including skin, lung, bladder, and liver cancer. Since genetic alterations often 

occur during cancer development, the objective of this study was to explore what 

types of genetic alterations were induced by chronic exposure of human HaCaT cells 

to arsenic. After 20 passages in the presence of inorganic trivalent arsenite at 

concentrations of 0.5 or 1 µM, HaCaT cells had higher intracellular levels of 

glutathione, became more resistance to arsenite, and showed an increased frequency 

of micronuclei. Furthermore, the previously non-tumorigenic HaCaT cells became 

tumorigenic, as shown by subcutaneous injection into Balb/c nude mice. Cell lines 

derived from the tumors formed by injection of arsenite-exposed HaCaT cells into 

nude mice expressed higher levels of keratin 6, a proliferation marker of keratinocytes, 

than parental HaCaT cells, whereas the expression of keratins 5, 8, and 10 was 

significantly decreased. Comparative genomic hybridization demonstrated 

chromosomal alterations in the 11 cell lines derived from these tumors; all 11 showed 

significant loss of chromosome 9q and 7 showed significant gain of chromosome 4q. 

The present results show that long-term exposure to low doses of arsenite transformed 

non-tumorigenic human keratinocytes to cells that were tumorigenic in nude mice and 
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that chromosomal alterations were observed in all cell lines established from the 

tumors.  
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Introduction 

Arsenic is ubiquitous in nature and is released into the environment via industrial 

processes and agricultural and medical applications (Chan and Huff 1997). Due to the 

natural distribution, drinking water is the most common source of arsenic exposure 

for the general population (Gebel 2000) and millions of people worldwide suffer from 

arsenic intoxication caused by drinking arsenic-contaminated water (National 

Research Council 2001). Epidemiological studies have shown a strong association 

between chronic arsenic exposure and various adverse health effects, including 

cardiovascular diseases, neurological defects, and cancers of the lung, skin, bladder, 

liver, and kidney (Calderon et al. 2001; Chen et al. 1985; Chen et al. 1995; Chiou et al. 

2001; Smith et al. 1992). Although the processes involved in arsenic carcinogenesis 

remain an enigma, a variety of mechanisms, both genotoxic and non-genotoxic, have 

been proposed to explain the carcinogenicity of arsenic at the cellular and molecular 

levels (Kitchin 2001; Rossman 2003). 

A risk of arsenic-induced chronic diseases, such as cancer and cardiovascular 

diseases, is clearly associated with prolonged exposure to low doses of arsenic. 

Several studies have shown that low doses of inorganic arsenic compounds stimulate 

the proliferation of mammalian cells (Barchowsky et al. 1999; Germolec et al. 1996; 

Lee et al. 1985). Furthermore, long-term exposure to low concentrations of arsenic 
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causes increased neoplastic transformation of murine JB6 Cl41 cells (Huang et al. 

1999), blast transformation of human lymphocytes (Meng and Meng 2000), and 

malignant transformation (tumors formed on injection of arsenic-transformed cells 

into nude mice) of the rat liver epithelial cell line, TRL 1215 (Zhao et al. 1997), the 

human prostate epithelial cell line, RWPE-1 (Achanzar et al. 2002), and the human 

osteosarcoma cell line, TE85 (Mure et al. 2003). Long-term exposure to low doses of 

arsenite also results in increased tolerance to acute arsenic exposure (Romach et al. 

2000), and the aberrant expression of genes involved in the regulation of a variety of 

cellular functions, including signal transduction, the stress response, apoptosis, and 

cell proliferation (Chen et al. 2001; Chen et al. 2001; Vogt and Rossman 2001). These 

studies strongly suggest that chronic exposure to low levels of arsenic can result in 

cellular changes that promote arsenic-induced cell transformation or tumor 

development. 

Over the past few decades, numerous genetic alterations affecting 

growth-controlling genes have been identified in neoplastic cells, providing 

persuasive evidence for the genetic basis of human cancer (Lengauer et al. 1998). All 

tumors contain genetic alterations, including subtle changes in DNA sequences, gene 

amplification, and gross chromosome losses, gains, translocations, and aneuploidy 

(Cahill et al. 1999; Schar 2001). Those tumors exhibiting abnormal karyotypes 
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involving either chromosomal rearrangement and/or aneuploidy are classified as 

chromosomal instability tumors (Bardelli et al. 2001). Although arsenic-induced 

malignant transformation has been shown to be associated with DNA 

hypomethylation (Zhao et al. 1997), increased matrix metalloproteinase-9 secretion 

(Achanzar et al. 2002), and delayed mutagenesis (Mure et al. 2003), how arsenic 

induces genetic and epigenetic alterations during cancer development remains to be 

elucidated. Treatment with inorganic trivalent arsenite results in the formation of 

DNA single strand breaks (Lynn et al. 1997) and in gene amplification (Lee et al. 

1988; Yih and Lee 2000). Although inorganic arsenic compounds are ineffective in 

inducing point mutation in a variety of cultured cell systems (Oberley et al. 1982; 

Rossman et al. 1980), they cause chromosomal damage in a variety of in vitro (Hei et 

al. 1998; Jha et al. 1992; Lee et al. 1985) and in vivo systems (Gonsebatt et al. 1997). 

Inorganic arsenic is generally accepted as a clastogenic agent.  

We have recently reported that treatment with inorganic trivalent arsenite 

increases the frequency of micronuclei (MN) and aneuploidy in human fibroblasts 

(Yih et al. 1997). These arsenite-treated human fibroblasts were also shown to have an 

unstable karyotype, but an increased life span (Yih et al. 1997). To explore the 

association of chromosomal alterations with arsenic-induced tumorigenicity in 

epithelial cells, an immortalized, but non-tumorigenic, human skin keratinocyte cell 
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line, HaCaT (Boukamp et al. 1988), was exposed to low dose inorganic trivalent 

arsenite for a long period. Conversion of the cells from non-tumorigenic to 

tumorigenic was demonstrated by injection of arsenite-exposed cells into nude mice, 

while chromosomal alterations in the cell lines established from the resulting tumors 

were analyzed using the comparative genomic hybridization (CGH) technique, which 

permits the rapid detection and mapping of DNA sequence copy number differences 

between a normal and an abnormal genome (Kallioniemi et al. 1992). Our results 

demonstrate that tumor cell lines derived from tumors induced by injection with 

arsenite-treated cells show chromosomal alterations. 

 

Materials and Methods 

Cell culture and treatment. HaCaT cells, kindly provided by Prof. Dr. Norbert E. 

Fusenig (German Cancer Research Center, Heidelberg, Germany), were routinely 

grown in Dulbecco’s modified Eagle medium (DMEM, GIBCO, Grand Island, NY) 

supplemented with 10% fetal bovine serum (FBS, GIBCO), 1% glutamine, and 

antibiotics (100 units/ml of penicillin and 100 µg/ml of streptomycin) (Boukamp et al. 

1988). For long-term exposure of HaCaT cells to arsenite, 5×105 cells were plated 

onto a 100-mm Petri dish and were fed with medium containing various 

concentrations of sodium arsenite (0, 0.5, and 1 µM). Every 4 days, the cells, grown 
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to near confluence, were subcultured, re-plated at the same cell density, and fed with 

arsenite at the same concentration. Subculturing was continued for 20 passages and 

the accumulated population doublings during these 20 passages calculated. HaCaT 

cells which had been exposed to 0, 0.5, or 1 µM sodium arsenite for 20 passages were 

designated as A0, A1, or A2 cells, respectively. 

 

Cytotoxicity assay. The cytotoxicity of arsenite was determined using the colony 

forming assay or the sulforhodamine B (SRB) assay. The colony forming assay was 

performed as described previously (Ho and Lee 1999). In brief, the HaCaT cells were 

treated with various concentrations of sodium arsenite for 24 h and replated at 200 

cells per 60-mm dish in triplicate, then, after incubation for 10 days, the colonies were 

fixed, stained, and counted under a dissection microscope. The SRB assay (Skehan et 

al. 1990) was performed using 96-well microplates and a density of 1,000 HaCaT 

cells per well. After addition of sodium arsenite, the microplates were incubated for 

72 h, then the cells were fixed for 1 h with ice-cold 50% trichloroacetic acid, then 

stained for 30 min with 0.4% (w/v) SRB in 1% acetic acid solution. After extensive 

washes with distilled water, the bound SRB was extracted with 100 µl of 10 mM 

unbuffered Tris-base solution and measured using a 96-well plate reader (BIO-RAD 

model 550, CA). The survival curves were plotted by expressing the absorbance of 



 

 11

treated wells as a percentage of that of control wells and the IC50 values were 

calculated by linear regression. 

 

GSH determination. Cellular GSH levels in logarithmically growing cells were 

determined as described by Cohn and Lyle (Cohn and Lyle 1966).  

 

Cytokinesis-block micronucleus (MN) assay. The method of Fenech and Morley 

with slight modifications was used to analyze the frequency of arsenite-induced MN 

(Fenech and Morley 1989). In brief, A0, A1 and A2 cells were incubated for 30 h with 

2 µg/ml of cytochalasin B, then treated for 150 sec with hypotonic solution (0.05% 

KCl). After fixation for 8 min in a 20:1 (v/v) mixture of methanol and acetic acid, the 

cells were stained for 10 min with 5% (v/v) Giemsa solution, then the number of 

micronuclei were scored in 1000 binucleate cells; under the conditions used, the 

frequency of binucleate cells was 500-600 per 1000 cells. 

  

Tumorigenicity test and establishment of tumor cell lines. Male Balb/c nude mice 

aged 4-6 weeks, obtained from the National Laboratory Animal Center (Taipei, 

Taiwan), were injected subcutaneously with 3 × 106 A0, A1, or A2 cells in 100 µl of 

phosphate-buffered saline, pH 7.4, (PBS) at each of two sites on either side of the 
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back. Five animals were used per cell line and were maintained on regular food and 

water. To monitor tumor formation, the longest and shortest diameters of the tumors 

were measured weekly and starting when the tumor was first apparent. At the end of 

the experiment, the tumors were excised, then part of the tumor tissue was fixed in 

buffered formalin for histological examination and another part was washed with PBS, 

minced, digested with collagenase type IV, and seeded in a Petri dish to establish 

tumor cell lines. Three cell lines, designated T1, T2, and T3, were established from 

the A1-derived tumors, and two, T4 and T5, from A2-derived tumors. To confirm their 

tumorigenicity, 3 x 106 T1 and T4 cells in 100 µl of PBS were injected into Balb/c 

nude mice and tumor formation monitored as described above. Two further cell lines, 

designated as T1R1 and T1R2, and 4, designated as T4R1-T4R4, were established 

from the T1- and T4-induced tumors, respectively. In a separate experiment to see if 

arsenic enhanced tumor progression, 5 other cell lines, T4A1-T4A5, were derived 

from tumors in T4-injected Balb/c nude mice which were also given 

arsenite-containing water (30-50 ppb) from 1 week before injection until the end of 

the experiment. 

 

Western blotting analysis of keratins. Logarithmically growing cells were scraped 

from culture dishes using a rubber policeman, lysed immediately in electrophoretic 
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sample buffer, and heated at 95°C for 10 min (Laemmli 1970). Protein concentrations 

were determined by the BioRad protein assay (BioRad, Munich, Germany). An 

aliquot containing 10-20 µg of protein was loaded onto a 10% SDS-polyacrylamide 

gel, then, after electrophoretic separation, the proteins were transferred onto a PVDF 

membrane using a semidry electrotransfer system (ATTO, Tokyo, Japan). After 

blocking with 5% milk in PBS containing 0.2% Tween 20 for 1 h at room temperature, 

the membranes were reacted with primary antibodies against keratin 5/8, 6, 7/17, 10, 

14, or 18 (Santa Cruz Biotechnology, Santa Cruz, CA) and horseradish 

peroxidase-conjugated secondary antibody (Organon Teknika-Cappel, Turnhout, 

Belgium) as previously described (Yih and Lee 2000). Keratins were then visualized 

using an enhanced chemiluminescence system according to the manufacturer’s 

instructions (Pierce, Rockford, IL). 

 

Chromosomal alteration analysis by CGH. CGH was performed essentially as 

described by Kallioniemi et al. (Kallioniemi et al. 1992) on normal male human 

lymphocyte metaphase spreads. DNA isolated from control HaCaT cells or cells 

derived from arsenite-induced tumors was labeled via nick translation with Spectrum 

Red-dUTP and FITC-dUTP, respectively (Vysis, Downer Grove, IL) and the 

500-3,000 bp products used as the probe for CGH. After hybridizing the probe with 
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the spreads for 48-72 hr at 37ºC, the slides were washed and counterstained with 

DAPI, then metaphases were examined under a Zeiss Axioskop microscope equipped 

with appropriate epifluorescent filters and a CCD camera (Sensys, Photometrics, 

Tucson, Az) controlled by the SmartCapture program. The filter system (Chroma 

Technology, Barttleboro, VT) consisted of a triple-bandpass beam splitter and a 

triple-bandpass computer-controlled filter wheel (Ludl Electronic Products, 

Hawthrone, NY). Image acquisition, profile generation, and analysis were performed 

using the QUIPS XL genetics workstation system (Vysis). After karyotyping, the 

green-to-red ratio profiles were calculated down the axis of each chromosome. Data 

from ten captured metaphases were used to generate a mean profile ± 1 standard 

deviation (SD) per hybridization. Threshold values of 1.2 and 0.8 were set to identify 

the presence of gains and losses, respectively. To avoid bias due to possible different 

affinities of the fluorochromes for the DNA, the hybridization experiment was 

repeated using the same DNA samples from HaCaT cells and arsenite-induced tumor 

cells, but with the fluorochromes reversed, and the results from the two hybridizations 

used to determine the gains and losses. 

 

Results 
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Increased intracellular GSH levels and arsenite resistance in long-term 

arsenite-exposed cells. When the colony forming assay was performed on HaCaT 

cells treated with arsenite for 24 h, the IC50 was found to be 8.7 µM. In a pilot study, 

0.5 or 1 µM arsenite did not affect HaCaT cell proliferation. We therefore exposed 

HaCaT cells continuously for 20 passages to 0, 0.5, or 1 µM arsenite and designated 

the final cell populations as A0, A1, and A2 cells, respectively. At the doses used, 

arsenite did not significantly affect the growth rate of HaCaT cells, the accumulated 

population doublings ranging from 58 to 67 (Figure 1A). However, when the A0, A1, 

and A2 cells were then exposed to higher concentrations of sodium arsenite (0 to 16 

µM) for 72 h, the IC50s for arsenite, examined using the SRB assay, were 2.2 ± 0.3, 

3.2 ± 0.4, and 3.7 ± 0.5 µM, respectively (Figure 1B). The IC50 values for the A1 and 

A2 cells were significantly higher than that for A0 cells, showing that the A1 and A2 

cells were more resistant to arsenite. Consistent with previous reports showing that 

elevated GSH levels are frequently associated with arsenic resistance (Brambila et al. 

2002; Lee et al. 1989), intracellular GSH levels in A1 and A2 cells were significantly 

higher than those in A0 cells (Figure 1C). 

 

Increased micronuclei formation in long-term arsenite-exposed cells. Micronuclei 

(MN), which, in general, result from the loss of whole chromosomes or chromosome 
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fragments, are frequently used to monitor chromosomal damage and/or instability in 

in vitro and in vivo systems (Fenech 2000). The frequency of MN in A0, A1, and A2 

cells was examined immediately after exposure to arsenite for 20 passages by using 

the cytokinesis-block MN technique. As shown in Figure 1D, the frequency of MN in 

A1 and A2 cells was significantly higher than that in A0 cells, indicating that 

long-term exposure to low doses of arsenite resulted in increased chromosomal 

damage. 

 

Tumorigenicity of HaCaT cells after long-term exposure to a low dose of arsenite. 

The tumorigenicity of A0, A1, and A2 cells was examined by injecting the cells into 

Balb/c nude mice. As shown in Figure 2, no tumor growth was seen after injection of 

A0 cells, whereas tumors were seen 2 months after injection of A1 or A2 cells. As 

summarized in Table 1, tumors were formed at 5 or 7 of the 10 sites injected with A1 

or A2 cells, respectively. Histological examination of the tumors revealed the 

formation of a multilayered, hyperproliferative, keratinizing epithelium (Figure 3A 

and B). When two tumor cell lines, T1 and T4, derived, respectively, from tumors 

induced by injection with A1 or A2 cells, were re-injected into nude mice to confirm 

their tumorigenicity, tumors were rapidly formed within 2 weeks at almost all 

injection sites (Figure 2D and Table 1). Their histological phenotypes were clearly 
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more malignant than those formed after injection with A1 or A2 cells (Figure 3C and 

D). When T4 cells were injected into nude mice given arsenite-containing water from 

1 week prior to injection until the end of the experiment, the number of tumors 

formed and the rate of tumor formation were the same as in similarly injected nude 

mice given arsenite-free water (data not shown), showing that the continued presence 

of arsenite did not enhance tumor progression.  

 

Altered keratin expression in long-term arsenite-exposed cells and cell lines 

derived from arsenite-induced tumors. Keratins are components of intermediate 

filaments and play an essential role in cytoskeleton formation (Morley and Lane 

1994). They are involved in a variety of cell functions and alterations in keratin 

expression are closely associated with tumor progression (Chu and Weiss 2002). 

Using Western blotting, the levels of keratins 5, 6, 7, 8, 10, and 17 were found to be 

significantly decreased in A1 and A2 cells compared to A0 cells (Figure 4A), whereas 

levels of keratins 14 and 18 remained relatively constant. A significant decrease in 

levels of keratins 5, 8, and 10 was also observed in all cell lines established from 

tumors (Figure 4B). The expression of these keratins in T1R2 and T4R2 cells was in 

general lower than that in the parental T1 and T4 cells. The levels of keratins 7, 14, 17 

and 18 did not change in these cell lines, whereas, due to the very low levels in A0 
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cells, the levels of keratin 6, a proliferation marker, were markedly increased (Figure 

4B).  

 

Identification of chromosomal alterations in cell lines derived from long-term 

arsenite-exposed cells. To evaluate the presence of genetic changes in 

arsenite-induced tumors, CGH analysis was performed to analyze DNA sequence 

copy number changes in cell lines derived from tumors produced by injection with A1 

or A2 cells or cell lines derived from the resulting tumors. The major changes found 

in these cell lines were gain of chromosome 4q and loss of chromosome 9q (Figure 

5A). Other regions occasionally showing gain and loss of chromosome regions are 

summarized in Figure 5A. In a detailed comparison (Figure 5B), all 5 tumor cell lines 

established from A1 and A2 cells (lines T1-T5) showed gain of chromosome 4q and 

loss of a large region of chromosome 9q. However, although all 6 of the cell lines 

derived from tumors formed by injection with T4 cells showed loss of chromosome 

9q, only 2 (lines T4R4 and T4A1) showed gain of chromosome 4q. These results 

show that 9q12-22 was lost in all these cell lines and that chromosomal alteration, 

particularly loss of chromosome 9q, was a common event in tumor cells derived from 

arsenite-exposed HaCaT cells. 
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Discussion 

 

Chronic arsenic exposure results in skin pathology, including hyperkeratosis, 

pigmentation changes, Bowen’s disease, basal cell carcinomas and squamous cell 

carcinomas (Centeno et al. 2002). In the present study, we demonstrated that 

long-term low dose exposure to sodium arsenite converted the non-tumorigenic 

human keratinocyte HaCaT cell line into cells that were tumorigenic in nude mice. 

Histology of the tumors caused by injection of arsenite-treated HaCaT cells showed 

epithelial hyperplasia, mild dysplasia, severe dysplasia, and invasive carcinoma. 

These phenotypes are similar to arsenic-induced skin pathology. These results 

showing the induction of neoplastic transformation by long-term exposure of 

non-tumorigenic cells to low doses of arsenite are consistent with those of several 

other studies using different cell systems (Achanzar et al. 2002; Huang et al. 1999; 

Mure et al. 2003; Zhao et al. 1997).  

Consistent with several previous reports (Brambila et al. 2002; Lee et al. 1989; 

Romach et al. 2000), we showed that long-term exposure of HaCaT cells to low doses 

of arsenite resulted in an increase in intracellular GSH levels and resistance to arsenite 

challenge. These results also suggested that the insults produced by low dose arsenite 

stress modulated the cellular biochemistry to adapt to the growth environment. Since 
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acquisition of a survival advantage is crucial for the development of cancer (Hanahan 

and Weinberg 2000), long-term exposure to arsenite, even at low doses, warrants 

concern. 

In in vitro systems, arsenite induces MN in a variety of cells (Eastmond and 

Tucker 1989; Liu and Huang 1997; Wang and Huang 1994). Both low-dose and 

high-dose exposure to arsenite induces MN formation (Yih and Lee 1999), but 

low-dose treatment results mainly in kinetochore-positive (K+)-MN, whereas 

high-dose treatment results mainly in K--MN. K+-MN are usually caused by failure of 

the whole chromosome to segregate into daughter cells, and agents inducing 

aneuploidy by interfering with spindle formation often induce K+ MN formation 

(Eastmond and Tucker 1989). Thus, low-dose arsenite may be considered as an 

aneugen. In fact, an increased frequency of MN has been demonstrated in exfoliated 

bladder cells, buccal cells, sputum cells, and lymphocytes from arsenic-exposed 

populations (Rossman 2003). The increased frequency of MN seen in A1 and A2 cells 

in this study shows that long-term exposure to low-dose arsenite can cause 

chromosomal damage. Since chromosomal alterations are a general manifestation of 

tumors (Cahill et al. 1999; Schar 2001), the effects of arsenic-induced chromosomal 

damage may play a role in arsenic tumorigenesis. 

Keratins are the major structural proteins in epithelial cells and consist of a family 
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of proteins (Morley and Lane 1994). Several human genetic diseases provide evidence 

that keratins function to protect cells from mechanical and non-mechanical stresses 

that result in cell death (Fuchs and Cleveland 1998; Ma et al. 2001). The expression 

of keratins is affected by cellular differentiation, environmental stimuli, and diseases 

(Morley and Lane 1994). Progressive alterations in keratin expression are closely 

associated with the development of a variety of tumors (Chu and Weiss 2002). In our 

present study, long-term exposure of HaCaT cells to low-dose arsenite caused a 

reduction in the levels of keratins 5, 6, 7, 8, 10, and 17, and the cell lines derived from 

tumors induced by injection with arsenite-treated cells had a similar pattern of 

expression of keratins, except that the levels of keratins 7 and 17 were unchanged and 

keratin 6 levels were significantly increased in the tumor cell lines. These results 

show that long-term arsenite exposure can result in altered regulation of keratin 

expression. Levels of keratin 6, a marker of hyperproliferative keratinocytes 

(Tomic-Canic et al. 1998), are increased during wound healing, psoriasis, and other 

inflammatory disorders (Tomic-Canic et al. 1998). Furthermore, increased levels of 

keratins 6 and 16 have been reported in arsenic-induced Bowen’s disease, and 

increased levels of keratins 6, 16, and 17 are seen in arsenic-induced squamous cell 

carcinoma and basal cell carcinoma (Yu et al. 1993). The increased keratin 6 

expression seen in tumor cell lines derived from long-term arsenite-exposed HaCaT 
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cells suggests that keratin 6 is a good proliferation marker for arsenite-induced 

carcinogenesis. 

Using CGH analysis, we demonstrated genetic changes in cells exposed to 

low-dose arsenite for a long time. Since gain of chromosome 4q and loss of 9q were 

observed in most of the cell lines established, these nonrandom changes are possibly 

important genetic events in arsenic tumorigenesis. However, although gain of 

chromosome 4q was seen in all 5 lines cells derived from A1 and A2-induced primary 

tumors (lines T1-T5), it was only seen in 2 (T4R4 and T4A1) out of 6 cell lines 

derived from T4-induced secondary tumors. This suggests that gain of chromosome 

4q might not be crucial for arsenite-induced tumorigenicity. On the other hand, loss of 

chromosome 9q was consistently observed in all primary and secondary tumor cell 

lines established in this study, suggesting that it plays an essential role in 

arsenite-induced tumorigenicity. Deletion of all or part of chromosome 9q is seen in 

tumors from patients exposed to arsenic (Moore et al. 2002). As reported by 

(Boukamp et al. 1997), HaCaT cells are spontaneously immortalized human skin 

keratinocytes and remain nontumorigenic up to 300 passages (Boukamp et al. 1997). 

Since translocations and deletions occurred during late passages, the presence of rare 

tumorigenic variants in A0 cells warrants our concern. However, it is unlikely because 

the sustained nontumorigenic phenotype of HaCaT cells during long-term propagation 
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is well associated with their preserved chromosomal balance demonstrated by 

karyotypic and CGH analysis (Boukamp et al. 1997).  

The association of chromosomal alterations with cancer development is a 

complicated issue. Gain of chromosome 4q or loss of 9q has been found in a variety 

of cancers, including skin, bladder, and lung cancers (Hartmann et al. 2002; Merlo et 

al. 1994; Popp et al. 2000), but other studies found an association between loss of 

chromosome 4q or gain of 9q and cancer development (Balsara et al. 2001; Jin et al. 

2001). These studies indicate the presence of both tumor suppressor genes and 

oncogenes on these chromosomal regions. The genes for chemokine ligands 1, 2, and 

3 are localized on chromosome 4q (Haskill et al. 1990) and are considered as 

oncogenes because of their growth stimulatory activity. Two putative tumor 

suppressor genes, deleted in bladder cancer 1 (DBC1) and deleted in esophageal 

cancer 1 (DEC1), are localized on chromosomal 9q. Loss of heterozygosity of DBC1 

is seen in some bladder cancers (Habuchi et al. 1998), while DEC1 expression is 

reduced or absent in esophageal squamous cell carcinomas (Nishiwaki et al. 2000). 

The expression of these genes and its relationship to arsenic carcinogenesis requires 

further investigation. 

In conclusion, our results demonstrate that long-term exposure to low doses of 

arsenite can cause genetic instability and lead to conversion of non-tumorigenic 
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human epithelial cells into cells that are tumorigenic in nude mice. However, the 

oncogenes and/or tumor suppressor genes involved in arsenic-induced carcinogenesis 

require further investigation. 
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Table 1. Tumorigenicity of arsenite-exposed cells and cell lines derived from 

arsenite-induced tumors after s.c. injection into nude mice 

Cellsa Days # of tumors/ # of injection Tumor size (mm3)b 

A0 128 0/10 (0 %)  

A1  5/10 (50 %) 68.3 (36.5 – 174.1) 

A2  7/10 (70 %) 119.0 (42.1 - 314.1) 

T1 35 4/4 (100 %) 146.5 (105.4 – 185.6) 

T4 94 8/10 (80 %) 413.2 (78.9 – 1242.8) 

a A0, A1, and A2: final cell lines after treatment with 0, 0.5, or 1 µM sodium arsenite, 

respectively, for 20 passages. 

T1 and T4: cell lines derived from tumors induced by injection with A1 cells or A2 

cells, respectively. 

b Tumor size = longest x shortest2 diameter (in mm) x 0.5. 
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Figure legends 

Figure 1. Effects of long-term sodium arsenite treatment on accumulated 

population doubling, arsenic resistance, intracellular GSH levels, and MN 

frequency.  

(A) HaCaT cells were continuously treated for 20 passages with 0, 0.5, or 1 µM 

sodium arsenite, and were then designated as A0, A1 and A2 cells as described in the 

Materials and Methods. The accumulated population doublings were calculated from 

the sum of the population doublings calculated from the cell numbers at the beginning 

and the end of each passage. (B) A0, A1, and A2 cells were treated with different 

concentrations of sodium arsenite for 72 h, then cell survival was determined using 

the SRB assay and the IC50 values calculated by linear regression. (C) Intracellular 

GSH levels in A0, A1, and A2 cells were determined as described in the Materials and 

Methods. (D) MN analysis was performed on A0, A1, and A2 cells as described in the 

Materials and Methods. In (B), (C) and (D), the data are the means for three 

independent experiments. Bars, SD. *, p < 0.05 by Student’s t test (C). *, p < 0.05 by 

Fisher’s exact test (D). 

 

Figure 2.  Growth curves of tumors formed in nude mice by s.c. injection of A0, 



 

 37

A1, A2 or T4 cells.  

Tumor size (longest x shortest2 diameter x 0.5 in mm3), measured once a week 

starting 1 month (A0-A2 cells) or 2 weeks (T4 cells) after injection, was plotted 

against time. (A) A0 cells; (B) A1 cells; (C) A2 cells; (D) T4 cells. The dashed line 

indicates 30 mm3 and a tumor size greater than this was considered as tumor 

formation in Table 1. 

 

Figure 3. Histological examination of tumors formed in nude mice.  

(A) and (B) tumors showing a hyperplastic stratified epithelium with prominent 

parakeratosis were formed by injection of A1 cells (A) or A2 cells (B). (C) and (D) 

tumors with more malignant characteristics were formed by injection of cell lines T1 

(C) or T4 (D). Bar = 50 µm. 

 

Figure 4. Western blotting analysis of keratins in arsenite-exposed cells and cell 

lines derived from tumors induced by injection of arsenite-treated cells.  

Keratin levels in A0, A1, and A2 cells (A) and in cell lines derived either from tumors 

induced by injection of arsenite-treated cells (T1 and T4) or from those induced by 
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injection of lines T1 or T4 (T1R2 and T4R2) (B) analyzed by Western blotting. 

ß-Actin was used as the loading control and used to normalize the keratin expression 

levels, then the normalized expression level in each cell type was compared to that in 

A0 cells. The data are the means±SD for three independent experiments. *, p < 0.05 

by Student’s t test. 

Figure 5. CGH analysis of cell lines derived from arsenite-induced tumors. (A) 

All cell lines were compared with HaCaT cells.  

Chromosomal loss is indicated by a line to the left of each chromosome and a gain by 

a line to the right. The entire X and Y chromosomes were excluded from analysis. (B) 

Chromosomal gain at the 4q region and loss at the 9q region in individual cell lines. 

Lines T1-T5 were derived from tumors induced in mice injected with A1 or A2 cells, 

while the other 6 lines were from tumors induced by injection of T4 cells.  
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A B

K7

K5

K10

K14

K17

K6

1.0       0.5±0.2* 0.5±0.2* 1.0       0.8±0.1* 0.7±0.0* 0.3±0.3* 0.2±0.3*

K8

K18

A0       A1      A2              A0      T1      T4     T1R2   T4R2

1.0       0.6±0.2* 0.3±0.3* 1.0  32.5±17.7* 17.5±2.8*14.3±7.9* 29.0±8.1*

1.0       0.6±0.2* 0.4±0.2* 1.0       1.2±0.4 1.2±0.4 0.8±0.4   1.0±0.6

1.0       0.8±0.1* 0.6±0.2* 1.0       0.8±0.1* 0.9±0.1* 0.6±0.1* 0.7±0.1*

1.0       0.6±0.2* 0.4±0.3* 1.0       0.8±0.0* 0.8±0.1* 0.6±0.2* 0.0±0.0*

1.0       0.8±0.1 0.8±0.3                  1.0       1.1±0.1 1.2±0.1* 0.9±0.1  1.2±0.3

1.0       0.6±0.2* 0.4±0.2* 1.0       1.2±0.4 1.2±0.4 0.8±0.4   1.0±0.6

1.0       1.0±0.2 1.0±0.2                  1.0       1.0±0.1 1.0±0.1 0.9±0.2   1.0±0.3

Fig. 4
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